Electron g-factor determined for quantum dot circuit fabricated from (110)-oriented GaAs quantum well

نویسندگان

چکیده

The choice of substrate orientation for semiconductor quantum dot circuits offers opportunities tailoring spintronic properties such as g-factors specific functionality. In this letter, we demonstrate the operation a few-electron double circuit fabricated from (110)-oriented GaAs well. We estimate in-plane electron g-factor profile enhanced inter-dot tunneling (leakage) current near zero magnetic field. Spin-blockade due to Pauli exclusion can block tunneling. However, blockade becomes inactive hyperfine interaction mediated spin flip-flop processes between states and nuclear host material. absolute value ~0.1 found field parallel direction [11(bar)0], is approximately factor four lower than that comparable material grown on widely-employed standard (001) substrates, in line with reported values determined by purely optical means well structures (110) substrates.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Electron spin polarization induced by linearly polarized light in a (110) GaAs quantum-well waveguide.

We report an experimental demonstration of generating electron spin polarization with linearly polarized light in a (110) GaAs quantum well. A detailed frequency-domain pump-probe study shows that the dynamic nuclear spin polarization arising from the oriented electron spins results in a strong dependence of the electron spin splitting on the photon energy and intensity of the linearly polarize...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Monolithic Passively Mode-Locked Lasers using Quantum Dot or Quantum Well Materials Grown on GaAs Substrates

In this work, the optical characteristics of monolithic passively mode-locked lasers (MLLs) fabricated from 1.24-μm InAs dots-in-a-Well (DWELL), 1.25-μm InGaAs single quantum well (SQW), and 1.55-μm GaInNAsSb SQW structures grown using elemental source molecular beam epitaxy (MBE) are reported. 5 GHz optical pulses with subpicosecond RMS jitter, high pulse peak power (1W) and narrow pulse width...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Physics

سال: 2022

ISSN: ['1089-7550', '0021-8979', '1520-8850']

DOI: https://doi.org/10.1063/5.0086555